Conformational stability of ibuprofen: assessed by DFT calculations and optical vibrational spectroscopy.
نویسندگان
چکیده
A thorough conformational analysis of ibuprofen [2-(4-isobutylphenyl) propionic acid] was carried by out, using density functional theory (DFT) calculations coupled to optical vibrational spectroscopy (both Raman and FTIR). Eight different geometries were found to be energy minima. The relative orientations of the substituent groups in the ibuprofen molecule, which can be considered as a para-substituted phenyl ring, were verified to hardly affect its conformational stability. The internal rotations converting the calculated conformers of ibuprofen were studied and the intramolecular interactions governing the conformational preferences of the molecule were analyzed by quantitative potential energy deconvolution using Fourier type profiles. The harmonic vibrational frequencies and corresponding intensities were calculated for all the conformers obtained, leading to the assignment of the spectra, and evidencing the sole presence of one of the lowest energy conformers in the solid state. Vibrational spectroscopic proof of intermolecular hydrogen bonds between the carboxylic groups of adjacent ibuprofen molecules, leading to the formation of dimers, was also obtained.
منابع مشابه
Theoretical Analysis on the Conformational Features of the HCO—Gly—L—Leu—NH2 Protected Dipeptide Motif: Ab initio and DFT Exploratory
For better understanding of conformational stability of the dipeptide model HCO—Gly—L—Leu—NH2,ab initio and DFT computations at HF/6-31G(4 6-311++G(d,p) and B3LYP/6-31G(d) levels oftheory were carried out. Geometry optimization of the dipeptide within the leucine (Leu) side chainangles (x2 ,x2) resulted in three stable conformations as followings: anti-anti, the most stable one,(Xi = 180°, x2 =...
متن کاملSubstituent effects on structural stability of formyl ketene and analysis of vibrational spectra of formyl haloketenes and formyl methylketene.
The conformational behavior and the structural stability of formyl fluoroketene, formyl chloroketene and formyl methylketene were investigated by utilizing quantum mechanical DFT calculations at B3LYP/6-31I + + G** and ab initio calculations at MP2/6-311 + + G** levels. The three molecules were predicted to have a planar s-cis<-->s-trans conformational equilibrium. From the calculations, the di...
متن کاملA conformational study of hydroxylated isoflavones by vibrational spectroscopy coupled with DFT calculations
The conformational preferences of a series of hydroxylated isoflavones were studied by optical vibrational spectroscopy (FTIR and Raman) coupled with density functional theory (DFT) calculations. Special attention was paid to the effect of the hydroxyl substitution, due to the importance of this group in the biological activity of these systems. The isoflavones investigated – daidzein, genistei...
متن کاملThe Prediction of Thermo Physical, Vibrational Spectroscopy, Chemical Reactivity, Biological Properties of Morpholinium Borate, Phosphate, Chloride and Bromide Ionic Liquid: A DFT Study
In the light of computational chemistry, based on morpholinium cation-based Ionic Liquid, their different types of physical, chemical, and biological properties is highlighted. The physical properties are evaluated through the Density Functional Theory (DFT) of Molecular Mechanics and also examine the chemical and biological properties. The difference between Highest Occupied Molecular Orbital ...
متن کاملInvestigation of Structural and Optoelectronic Properties of Sc2O3 Nanoclusters: A DFT Study
In this manuscript, density functional theory was used to explore structural, vibrational and optical properties of the (Sc2O3)n (n=1-5) cluster systems using DFT/B3LYP/LanL2DZ level of computation. Different stable isomers were obtained and numerous chemical parameters such as HOMO-LUMO gap, ionization potential and electron affinity were calculated successfully. Stability of the clusters was ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of pharmaceutical sciences
دوره 97 2 شماره
صفحات -
تاریخ انتشار 2008